Мастер класс как форма повышения квалификации

Закрыть ... [X]

Разделы: Математика

Урок № 1.

Тип урока: закрепление пройденного материала.

Цели урока:

Образовательные:

  • формирование навыка решения повышения уравнения с одним неизвестным сведением его к линейному уравнению с помощью свойств равносильности.

Развивающие:

  • формирование ясности и точности мысли, логического мышления, элементов алгоритмической культуры;
  • развитие математической речи;
  • развитие внимания, памяти;
  • формирование навыков само и взаимопроверки.

Воспитательные:

  • формирование волевые качества;
  • формирование коммуникабельность;
  • выработка объективной оценки своих достижений;
  • формирование ответственности.

Оборудование: интерактивная доска, доска для фломастеров, карточки с заданиями для самостоятельной работы, карточки для коррекции знаний для слабоуспевающих учащихся, учебник, рабочая тетрадь, тетрадь для домашних работ, тетрадь для самостоятельных работ.

Ход урока

1. Организационный момент – 1мин.

Поприветствовать учащихся, проверить их готовность к уроку, объявить тему урока и цель урока.

2. Проверка домашнего задания – 4 мин.

Учащиеся проверяют домашнюю работу, решение которой выведено с обратной стороны доски одним из учащихся.

3. Устная работа– 6 мин.

(1) Пока идет устный счет, слабоуспевающие учащиеся получают карточку для коррекции знаний и выполняют 1), 2), 4) и 6) задания по образцу. (См. Приложение 1.)

Карточка для коррекции знаний.

(2) Для остальных учащихся задания проецируются на интерактивную доску: (См. Презентацию: Слайд 2)

  1. Вместо звездочки поставь знак “+” или “–”, а вместо точек – числа:
    а) (5)+(7) = 2;
    б) (8) – (8) = (4)–12;
    в) (9) + (4) = –5;
    г) (–15) – (…) = 0;
    д) (8) + (…) = –12;
    е) (10) – (…) = 12.
  2. Составь уравнения, равносильные уравнению:
    а) х – 7 = 5;
    б) 2х – 4 = 0;
    в) х –11 = х – 7;
    г) 2(х –12) = 2х – 24.

3. Логическая задача: Вика, Наташа и Лена в магазине купили капусту, яблоки и морковь. Все купили разные продукты. Вика купила овощ, Наташа – яблоки или морковь, Лена купила не овощ. Кто что купил? (Один из учащихся, выполнивший задание выходит к доске и заполняет таблицу.) (Слайд 3)

Вика Наташа Лена К Я М

  Заполнить таблицу

Вика Наташа Лена К + – – Я – – + М – + –

 Ответ

(Учащиеся используют пластиковые листы и фломастеры.)

4. Обобщение умения решать уравнения сведением их к линейному уравнению –9 мин.

Коллективная работа с классом. (Слайд 4)

Решим уравнение

12 – (4х – 18) = (36 + 5х) + (28 – 6х). (1)

для этого выполним следующие преобразования:

1. Раскроем скобки. Если перед скобками стоит знак “плюс”, то скобки можно опустить, сохранив знак каждого слагаемого, заключенного в скобки. Если перед скобками стоит знак “минус”, то скобки можно опустить, изменив знак каждого слагаемого, заключенного в скобки:

12 – 4х + 18 = 36 + 5х + 28 – 6х. (2)

Уравнения (2) и (1) равносильны:

2. Перенесем с противоположными знаками неизвестные члены так, чтобы они были только в одной части уравнения (или в левой, или в правой). Одновременно перенесем известные члены с противоположными знаками так, чтобы они были только в другой части уравнения.

Например, перенесем с противоположными знаками неизвестные члены в левую, а известные – в правую часть уравнения, тогда получим уравнение

– 4х – 5х + 6х = 36 + 28 – 18 - 12, (3)

равносильное уравнению (2), а следовательно, и уравнению (1).

3. Приведем подобные слагаемые:

–3х = 34. (4)

Уравнение (4) равносильно уравнению (3), а следовательно, и уравнению (1).

4. Разделим обе части уравнения (4) на коэффициент при неизвестном.

Полученное уравнение х = будет равносильно уравнению (4), а следовательно, и уравнениям (3), (2), (1)

Поэтому корнем уравнения (1) будет число

По этой схеме (алгоритму) решаем уравнения на сегодняшнем уроке:

  1. Раскрыть скобки.
  2. Собрать члены, содержащие неизвестные, в одной части уравнения, а остальные члены в другой.
  3. Привести подобные члены.
  4. Разделить обе части уравнения на коэффициент при неизвестном.

Примечание: следует отметить, что приведенная схема не является обязательной, так как часто встречаются уравнения, для решения которых некоторые из указанных этапов оказываются ненужными. При решении же других уравнений бывает проще отступить от этой схемы, как, например, в уравнении:

7(х – 2) = 42.

5. Тренировочные упражнения – 8 мин.

№ № 132(а, г), 135(а, г), 138(б, г) – с комментарием и записью на доске.

6. Самостоятельная работа – 14 мин. (выполняется в тетрадях для самостоятельных работ с последующей взаимопроверкой проверкой; ответы будут отображены на интерактивной доске)

Перед самостоятельной работой учащимся будет предложено задание на сообразительность – 2 мин.

Не отрывая карандаша от бумаги и не проходя дважды по одному и тому же участку линии, начертите распечатанное письмо. (Слайд 5)

(Учащиеся используют пластиковые листы и фломастеры.)

1. Решить уравнения (на карточках) (См. Приложение 2)

Дополнительное задание № 135 (б, в).

7. Подведение итогов урока – 1 мин.

Алгоритм сведения уравнения к линейному уравнению.

8. Сообщение домашнего задания – 2 мин.

п.6, № № 136 (а-г), 240 (а), 243(а, б), 224 (Разъяснить содержание домашнего задания).

Урок № 2.

Цели урока:

Образовательные:

  • повторение правил, систематизация, углубление и расширение ЗУНов учащихся по решению линейных уравнений;
  • формирование умения применять полученные знания при решении уравнений различными способами.

Развивающие:

  • развитие интеллектуальных умений: анализа алгоритма решения уравнения, логического мышления при построении алгоритма решения уравнения, вариативности выбора способа решения, систематизации уравнений по способам решения;
  • развитие математической речи;
  • развитие зрительной памяти.

Воспитательные:

  • воспитание познавательной активности;
  • формирование навыков самоконтроля, взаимоконтроля и самооценки;
  • воспитание чувства ответственности, взаимопомощи;
  • привитие аккуратности, математической грамотности;
  • воспитание чувства товарищества, вежливости, дисциплинированности, ответственности;
  • Здоровьесбережение.

а) образовательная: повторение правил, систематизация, углубление и расширение ЗУНов учащихся по решению линейных уравнений;

б) развивающая: развитие гибкости мышления, памяти, внимания и сообразительности;

в) воспитательная: привитие интереса к предмету и к истории родного края.

Оборудование: интерактивная доска, сигнальные карточки (зеленая и красная), листы с тестовой работой, учебник, рабочая тетрадь, тетрадь для домашних работ, тетрадь для самостоятельных работ.

Форма работы: индивидуальная, коллективная.

Ход урока

1. Организационный момент – 1мин.

Поприветствовать учащихся, проверить их готовность к уроку, объявить тему урока и цель урока.

2. Устная работа – 10 мин.

(Задания для устного счета выводятся на интерактивную доску.) (Слайд 6)

1) Решите задачи:

а) Мама старше дочери на 22 года. Сколько лет маме, если им вместе 46 лет
б) В семье трое братьев и каждый следующий младше предыдущего в два раза. Вместе всем братьям 21 год. Сколько лет каждому?

2) Решите уравнения: (Пояснить)

;

 

 

 

 

 

 

 

 

 

Какие из данных уравнений являются линейными?

(Во время устного счета учащиеся используют сигнальные карточки: зеленую и красную)

3) Проверьте, правильно ли решено уравнение, если нет, то найди ошибки.(Слайд 7)

4 · (х – 5) = 12 – х
4х – 5 = 12 – х
4х + х = 12 – 5
5х = 7 /:5
х = 1,4
Желающий выходит к интерактивной доске
 исправить ошибки

 

4) Пояснить задания из домашней работы, вызвавшие затруднение.

3. Выполнение упражнений – 10 мин. (Слайд 8)

(1) Какому неравенству удовлетворяет корень уравнения:

4 – 5х = 5

а) x > 1;
б) x < 0;
в) x > 0;
г) x < –1.

(2) При каком значении выражении у значение выражения 2у – 4 в 5 раз меньше значения выражения 5у – 10?

(3)При каком значении k уравнение kx – 9 = 0 имеет корень равный – 2?

Посмотри и запомни (7 секунд). (Слайд 9)

Через 30 секунд учащиеся воспроизводят рисунок на пластиковых листах.

4. Физкультминутка – 1,5 мин.

Упражнение для глаз и для рук

(Учащиеся смотрят и повторяют упражнения, которые проецируются на интерактивную доску.)

5. Самостоятельная тестовая работа – 15 мин.

(Учащиеся выполняют тестовую работу в тетрадях для самостоятельных работ, дублируя ответы в рабочих тетрадях. Сдав тесты, учащиеся сверяют ответы с ответами, отображенными на доске)

Учащиеся, справившиеся с работой раньше всех, помогают слабоуспевающим учащимся.

(См. Приложение 3)

6. Подведение итогов урока – 2 мин.

– Какое уравнение с одной переменной называется линейным?

– Что называется корнем уравнения?

– Что значит “решить уравнение”?

– Сколько корней может иметь уравнение?

7. Сообщение домашнего задания. – 1 мин.

п.6, № № 294(а, б),244, 241(а, в), 240(г) – Уровень А, В

п.6, № № 244, 241(б, в), 243(в),239, 237– Уровень С

(Разъяснить содержание домашнего задания.)

8. Рефлексия – 0,5 мин.

– Вы довольны своей работой на уроке?

– Какой вид деятельности вам понравился больше всего на уроке.

Литература:

  1. Алгебра 7. / Ю.Н. Макарычев, Н.Г. Миндюк, К.И. Пешков, С.В. Суворова. Под редакцией С.А. Теляковского. / М.: Просвещение, 1989 – 2006.
  2. Сборник тестовых заданий для тематического и итогового контроля. Алгебра 7 класс/ Гусева И.Л., Пушкин С.А., Рыбакова Н.В.. Общая ред.: Татур А.О. – М.: “Интеллект-Центр” 2009 – 160 с.
  3. Поурочное планирование по алгебре. / Т.Н.Ерина. Пособие для учителей /М: Изд. “Экзамен”, 2008. – 302,[2] с.
  4. Карточки для коррекции знаний по математике для 7 класса./ Левитас Г.Г. /М.: Илекса, 2000. – 56 с.

Источник: http://xn--i1abbnckbmcl9fb.xn--p1ai/%D1%81%D1%82%D0%B0%D1%82%D1%8C%D0%B8/586102/


Поделись с друзьями



Рекомендуем посмотреть ещё:



Линейное уравнение с одной переменной. 7-й класс Как построить деревянный дом своими руками пошагово

Мастер класс как форма повышения квалификации Мастер класс как форма повышения квалификации Мастер класс как форма повышения квалификации Мастер класс как форма повышения квалификации Мастер класс как форма повышения квалификации Мастер класс как форма повышения квалификации

ШОКИРУЮЩИЕ НОВОСТИ